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Relativistic analogy of the Aharonov-Bohm effect in the 
presence of Coulomb field and magnetic charge 
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Department of Theoretical Physics, Belarus State University, Minsk 220080, Belarus 

Received 28 February 1992, in final form 9 July IS92 

Ahtract. We establish the exact solution o f  the Dirac equation for B charged particle 
moving in the Coulomb field plus Aharonov-Bohm field plus Dirac monopole field by 
using the equation in two-dimensional complex space. On the basis of the found solution, 
the relativistic analogy of the Aharonav-Bohm effect for the system o f  a Diogen atom 
existing in an infinite cylindrical solenoid is studied. In this ease we obtain some surprising 
results. One of them is that the Aharonov-Bohm effect is absent for certain states. 

1. Introduction 

To construct the algebraic method of solving the Dirac equation for the charged particle 
moving in the Coulomb field, Komarov and Romanova (1985) established the connec- 
tion between the Dirac equation and the equation for a particle having coordinates of 
two-component spinors. In this paper we show that the above-mentioned equation in 
two-dimensional complex space can be used to obtain the exact solution for the Dirac 
equation for a charged particle moving in the Coulbmb field plus Dirac monopole and 
Aharonov-Bohm fields (section 2). It should be noted that the equation in two- 
dimensional complex space is more convenient than the Dirac equation for the 
considered system because of two reasons. First, by transforming from the usual 
three-dimensional space to the two-dimensional complex space using Ks-transforma- 
tion (see Barut et al 1979) the Kepler problem becomes an oscillator problem (see, 
for example, Komarov and Romanova 1982, Kibler 1983). Second, the ‘extra’ variable 
in the Ks-transformation can be used to describe the Dirac monopole field (Iwai et a/ 
1986). Thus, for the equation written in two-dimensional complex space, the Dirac 
monopole potential can be introduced without an overt form. Second, for the above- 
mentioned equation we can use the parameters of group SU(2) (Fedorov 1979) to 
make the separation of variables in the equation (section 3). In section 4 we will 
establish the exact solution of the considered equation. The angular function can be 
obtained simply by using the algebraic correlations between operators of parameters 
of group SU(2). The radial equation of the system is standard and well known. The 
Aharonov-Bohm effect is of great interest to many researchers (see, for example, 
Afanasiev 1990). Considering this effect, the majority of investigators deal with the 
case of scattering of an electron beam by an infinite solenoid. However, there is another 
way to look at this problem. It is to study the spectrum of an atom, putting it in the 
field of an infinite solenoid. Actually, it is the problem of an electron, moving in the 
Coulomb field plus the Aharonov-Bohm field. In our case, to these fields we add the 
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Dirac monopole field. The exact solution found will enable us to make some conclusions 
about the relativistic analogy of the Aharonov-Bohm effect with the presence of the 
Coulomb field and a magnetic charge. One of them is that the Aharonov-Bohm effect 
is absent for certain quantum states of the particle. Second, if the magnetic flux inside 
the solenoid (the source of the Aharonov-Bohm field) changes slowly (adiabatically), 
then the conservation of the starting quantum state only continues until a certain 
critical value of the magnetic flux. Further change in this value leads to an inevitable 
sudden leap of the electron state. 

Le Van Hoang et al 

2. The connection between the equations 

In this section we will establish the connection between the equation in two-dimensional 
complex space and the Dirac equation for the charged particle moving in the Coulomb 
field plus the Dirac monopole field plus the Aharonov-Bohm field, and show the 
relationship between the eigenfunctions of these equations. 

Let us consider the equation (see Komarov and Romanova 1985) 

HY(5) = Ze2Y(5)  (1) 

where the four-component spinor Y(5) is a function of the complex coordinates & 
(s = 1,2); a* (A = 1.2.3) and p are Dirac matrices. Below in this paper we use the 
usual representation 

where and Y2 are two-component spinors, and uk ( A  = 1,2,3)  are Pauli matrices. 
In the Hamiltonian (2) (T~),, are the matrix elements of Pauli matrices, operating in 
the space of coordinates 5, which are regarded as spinor components; the asterisk 
denotes the complex conjugate operation. We regard the function AA as being invariant 
with respect to the transformation (a =arbitrary real constant): 

that follows the invariance of the Hamiltonian (2) by the above written transformation. 
Hence we have 

HQ-QH=O 

where 

Let us now make the substitution of variables in equation (1) using the following 
correlations: 

( 5 )  
X A = ~ $ ( T A ) S &  A = 1 , 2 , 3  

f = tan-'(Im &/Re 5,) ( O S f S 2 T ) .  
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In view of the assumed properties of [,, the variables x, ( A  = 1,2,3) constitute the 
components of three-dimensional real vector r and r = a  = & f .  In the new vari- 
ables the operators Q and H take the form 

J Q = i -  
Jf 

Qa,+r(eaA+ mc2p - E )  Qa,+ fic- H=-ificrq--he- XI J x2 

Jx, 2(r+x3) 2(r + x3) 
(7) 

where the functions A,, depend on the variables x,, only. From (7) we can easily show 
that the variables r and f in equation (1) are separated, and that, as follows from ( 6 ) ,  
we write 

y(r,f)=exP(ziqf)$(r). (8) 

Then 

QW = -2pq (9) 

and from equation (1) we obtain the following equation: 

( x z a I  -x,a,)fea,A,(r)+ mc’p r 
[-ifica,z+ficq- J 1 

r(r+x3) 

Taking into account that W( r, f )  is a single-valued function, the quantum number q 
can be expressed as 

q = 0 , * ; , * 1 , * ;  ,.... (11) 

In this view we see that: (i) if q=O equation (10) is the Dirac equation for a particle 
with mass m and charge -e, moving in the Coulomb field Ze/r  plus the field which 
is represented by the potential vector AA(r); (ii) when q Z 0  then to the mentioned 
fields is added the field of the Dirac monopole, situated in the origin of the coordinates 
system, with the magnetic charge 

satisfying the Dirac quantum condition (see Dirac 1979)t. 
From the above, it follows that the solution of the Dirac equation for a particle 

moving in our specified fields can be found by using equation (1). The wavefunctions 
in the usual three-dimensional space can be obtained from the solution of equation 
(1) making the substitution of variables ( 5 )  and then writing Im gI = 0. 

3. The separation of the variables in equation (1) 

As it was shown in section 2, to get exact solutions to the Dirac equation for the 
considered system, we can use equations (1) and (2) in which the potential vector A, 

t The possibility of monopole description by the use of the ‘extra’ coordinate has been used in many papers 
(see for example Iwai et al 1986). 
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has the following components: 

Le Van Hoang et al 

A,=O (F = constant). 
ntial vector (12) corresponds to the The pc 

coordinates r 
ironov-Bohm potenti; the usual 

(see Aharonov and Bohm 1959). To separate the variables in equation (l) ,  it is more 
suitable to use the new real variables r and aA ( A  = 1,2,3),  which are introduced as 

1 +ia,r, 5: = J; 9T( -) Jlf.2 ," 
where a'= a,,a,,; 
condition 9.9: = 1 (we will regard 9. =&J One can see from (13) that the matrix 

(s = 1,2)  are components of a constant spinor, satisfying the 

is unitary and unimodular, and thereby, owing to the above-mentioned property of 
coordinates &, is a representation of the group of the transformation in two-dimensional 
complex space, which keeps invariant the form (&. It means that the variables a, 
( A  = 1,2,3)  represent parameters of the group SU(2). Taking into account the local 
isomorphism between the group SU(2) and the group of rotation in three-dimensional 
space S0(3),  the parameters a, ( A  = 1,2,3)  have the following physical meanings: 

(i) the direction of the vector a coincides with the direction of the rotation axis; 
(ii) 1.1 =Itan ('p/2)1, where 'p is an angle of rotation around this axis (see Fedorov 

From the definition (13) it follows that 
1979). 

r = 6T& xA = 63rA),& = r 4 , ( a ) n ,  

where 
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are Kroneker delta and Levi-Civita symbols respectively). For further (aA+ and 
use we write the correlations of operators (15) as 

[IA(.). L ( a ) l = i ~ A , J u ( a )  [IA(.), le(-a)l=o 
[L(a), O+d41= iEA,,o,.(a) [IA(-) ,  O+da)I= iEAupOrrp(a) 

(16) 
OA,.(a)Lt4 = - I p ( - )  EABYOA.~ ( a )  o+o(a) = EmorOur(a ) 

~ ~ ~ ~ 0 . ~  ( 4 )  O d  a )  = ~ ~ ~ ~ 0 ,  ( a  ). 

Considering equation (1) as a starting equation, it is evident that the scalar product 
of the wavefunction in the f-space is defined as 

where f: =Re 5, and 4: = Im 5,. The substitution of variables (13 )  leads (17) to the 
formula 

The operators IA(a) (A = 1,2,3) are Hermitian with respect to scalar product (18) and 
represent the infinitesimal transformation operators of group SU(2) (see Fedorov 1979). 
Later on, we shall see that all calculations can be made algebraically by using formulae 
( la) ,  which certainly do not change with the other choice of parameters. 

Replacing (12)-(14) in ( 1 )  and (Z), using the representation (3) and taking into 
account that the Aharonov-Bohm field can be excluded with the aid of the substitution 

tan-' - 
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and putting (22) into (20) we obtain the following equations 

Le Van Hoang et a1 

(,:+I+- w c r-- Ze'e) h2co Q1- ( ,f+- Z;:IC) Q2=0 

- ( i - e ) a l + (  r;+l--r+- c Ze'e)Q2=0 h2cw 

As follows from (24) the variables r and U can be separated if we write 

QlZ(r, a) = F, .2(r)D~;(~)  (25) 
where the functions D:,"(a) are the eigenfunctions of the operator ,f, i.e. 

,fD$(u) =xD;,Xu). (26) 
With the use of formula (16) it is easy to see that the operators Cl (i.e. 13(-u)), 
J, = lA (u )+ iuA commute with the operator ,f, moreover [Cl, J,] = 0. Therefore, we will 
define the functions D$(u) by equation (26) and by the following equations 

J,(u)J,(u)D;:a) = J ( J +  l)O:,X(a) 

J3(a)D$(o) = (~+i)D;,"(a)  (27) 
13(-a)D:,X(a) = @;[;(a) 

that stipulate the choice of the designation for functions D:,"(u). 

('3, and Q2) from (24) we obtain the equations 
We can make another remark about equation (24). Excluding one of the functions 

from which follows the existence of supersymmetry in the considered problem. Indeed, 
the operator uAOA(u), anti-commuting with the operator ,f, commutes with all of the 
operators included in (28a). (286) and (27). Consequently, this circumstance leads to 
the typical, for super-symmetrical Hamiltonian, doubling of quantum states with the 
same values of energy and the quantum numbers J, p ,  q. 

4. Exact solution to equation (1) 

For the determination of the angular dependence of the wavefunction we start by 
solving the equations for the generalized spherical functions E;Ju): 

l A ( ~ ) L ( a ) E ~ J a )  = Wf l)Eiq(.) 

13(u)%(a) = p E i q ( u )  (29) 

l,,(-u)E~Ju) = &(a) .  

With the use of correlations (16) it is easy to make sure that the solutions of equations 
(29) can be written in the form 
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The allowed values of q are found from the single-valued condition of the wavefunction. 
The determination in two-dimensional complex space 

(31) 

corresponds to the spherical coordinates r, 4, 'p in the usual three-dimensional space. 
With the use of (13) we find that in these coordinates 

(32) 
If the previous substitution (19) is taken into account, then from (32) it follows that 

t 2 = f i ' e i ( f + v ) s i n -  4 6, = J; eif cos 2 
2 2 

Ekq(4, 'p, f)=ei~pt4'9t2ipfGL P'I (cos 4). 

eF 
27rhc p+q--=M M=O,*1,*2, +3, ... (33) 

and for the value q we have the former result ( 1 1 ) .  
The functions Gi9(x)  (x = OS3(a)) are defined by the first of equations (29) with 

the boundary conditions, deriving from the assumption that the source of the Aharonov- 
Bohm field (12) is an infinitely long cylindrical solenoid (inaccessible for an electron), 
whose axis is along x3, and radius R +O. It means that the function Gh(x) must vanish 
if x = *l. Putting (30) into the first of equations (29), we find that this equation becomes 
the well-studied equation for the hypergeometric functions and its solutions can be 
represented in the form 

where 

s=flp+ql f =flP - 41 L = 2 + s + t  2 = 0 , 1 , 2  ,.... 

s = t(P + q )  > 0 t=l(p-q)>O L = Y + p  
s = i ( p + q )  > 0 f = f ( q  -p)>O L = 2 + q  

s = - f (p+q)  > 0 L = Z - q  

s = - f (p+q)  > 0 L = 2 - p .  

Then we have 

t =!(p - q )  > 0 

f =l(q  -p) > 0 

In the formula (35) T ( Z )  is the Euler y-function and P e b ' ( x )  are the Jacobipolynomials 
(see, for example, Kom et a1 (1989). 

With the use of the function E&(a) we can, in a simple way, build solutions of 
equations (26) and (27): 
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where 
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xI = * J ( J  +;)’- q2, 

Putting (25) into equations (24), we obtain the equations for the radial function, 
which really coincide with the equations for the radial function of the Dirac particle 
moving in the Coulomb field, the only difference being the set of eigenvalues of the 
operator i. Therefore, their solution, which belongs to the eigenvalue of the energy 

s = m c  ’( 1+h2c2[N+(XZ-22e4/h2cZ)’~2]2 )- N =0, 1,2,. . . (39) 
Z2e‘ 

can be found in any book on relativistic quantum mechanics. 

5. Discussion of the found solution 

The energy spectrum (39) and functions (37) should now be analysed. From (33)-(39) 
one can see that the quantum states of the considered system are set by numbers N, 
9, M; moreover 

N=O, 1,2, .  . . a=o, 1,2, .  . . M=O,i1,*2 ,.... 
Putting into (36), concrete values for the quantum numbers corresponding to the 
wavefunctions Eiq(x) in (37), we find 

J + f = a + p  for IqlSpSJ-$ (40a) 

J + f =  I+ Iql+l for -1qISps 191- 1 (406) 

1+.$=2-p+1 for - J + f S p S - l q J - l  ( 4 0 ~ )  

where p = M + eF/2ahc - q. 
In the value range of the quantum number p in (40). the values satisfying 

iq i - i<p<iq i  and -1qI-i < p <  - jqj (41 j 

are absent. This means that values do not satisfy the condition (36) that one of the 
functions EkJx) in (37) does not vanish when x = *l. Thus by fixing the value of the 
magnetic flux (F/2a)  in the solenoid, there are some quantum states in which a particle 
cannot exist. Namely, the states, given by the value M, in the following value ranges: 

are forbidden for the particle moving in the Coulomb field plus Aharonov-Bohm Dirac 
monopole fields. Specifically, for the states (a= 0) the restriction of the number M is 
given from (42) and from the ‘non fall to the centre’ condition 

Z2e4 x - 7 2 0 .  
h C  

(43) 
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From correlations (40) another interesting result follows. This is the energy spectrum 
dependence, of the considered system, on the magnetic flux ( F / 2 a )  in the solenoid 
(39), i.e. how the Aharonov-Bohm goes on this case. From (40) and (33) we have 

e F  J + f = L t + M  -q+- 
2ahc 

e F  for q + 141 - M s- 
2ahc 

e F  
for 4-141- M s - s  q+(q(  - M -  1 

2ahc 
J + f  = 2+ (q (+  1 (44b) 

eF e F  
2ahc 2ahc  

J + f = z + l - M + q - -  for -s  q - 141 - M  - 1 

Putting (44) into (38) and (39) one can see that the energy E of the particle, existing 
in the defined quantum state, is independent of the magnetic flux when the magnetic 
flux has a value in the range (446), i.e. in this case the Aharonov-Bohm effect is absent. 

Moreover, from equations (44) it follows that the considered system has no quantum 
state ( N ,  2, M) for the values of the magnetic flux in the ranges 

and 

This means that if the magnetic flux changes slowly (adiabatically), the conservation 
of the starting quantum state (N, 2, M )  only continues until a certain critical value 
of the magnetic flux. A further change in the value F / ~ T  leads to an inevitable sudden 
leap of the state of the system, i.e. to a breach of the adiabatical principle. 
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